
Since the late 1990s, reports of an emerging mul-
tidrug-resistant Salmonella enterica subspecies en-

terica serotype 4,[5],12:i:- strain have been published 
in Europe (1). This strain is a monophasic variant of 
Salmonella Typhimurium, predominantly resistant to 
ampicillin, streptomycin, sulfonamides, and tetracy-
cline (ASSuT). Its rapid increase in North America af-
ter 1998 has also been described (2). However, precise 
knowledge of the time of introduction and the initial 
influx of clinical cases caused by this serotype in the 
United States is not available because of inconsistent 
reporting before 2004 (3).

Previously, on the basis of high genetic simi-
larity between Salmonella 4,[5],12:i:- sequence type 
(ST) 34 isolates from the United States and Europe 
and Salmonella Typhimurium strains from Europe, 
we suggested a European origin for the Salmonella 
4,[5],12:i:- ST34 clade (4). With this study, we aimed to 
reconstruct a time-scaled phylogeny of the emerging 

ST34 clade by using a Bayesian modeling approach to 
determine its origin in United States.

The Study
We used publicly available whole-genome sequences 
of 1,431 Salmonella 4,[5],12:i:- ST34 isolates from the 
United States and Europe from 2008–2017, including 
sequences from 690 isolates from Europe (mainly from 
the United Kingdom and Denmark) and 741 isolates 
from multiple US states (Appendix 1, https://wwwnc.
cdc.gov/EID/article/26/12/20-0336-App1.xlsx). We 
used BEAST version 1.8.4 (5) to estimate divergence 
times, mutation rates, and location trait transitions. We 
applied the modeling approach to 10 subsets of 112 
sequences selected from the study population. These 
sequences represented 33% (474/1,431) of the study 
population and included 242 sequences from Europe 
(76% from humans, 8% from food products, 8% from 
livestock, and 8% from other sources) and 232 from the 
United States (62% from humans, 13% from food prod-
ucts, 21% from livestock, and 3% from other sources). 
Time-scaled phylogenies of each subset were recon-
structed by using a general time-reversible nucleotide 
substitution model, an uncorrelated lognormal relaxed 
molecular clock, and an exponential growth coalescent 
model with asymmetric trait transitions (Figure 1; Ap-
pendix 2 Figures 1–10, https://wwwnc.cdc.gov/EID/
article/26/12/20-0336-App2.pdf). All time-scaled phy-
logenies presented similar topology to a maximum-like-
lihood phylogeny constructed by using all 1,431 study 
isolates (based on visual inspection; Appendix 2 Figure 
11). Overall, averaged estimates from all subsets were 
in agreement as follows (Figure 2): the evolutionary 
rate was 3.64 × 10-7 substitutions/site/year (95% high-
est posterior density [HPD] 2.65–4.64 × 10-7), which cor-
responds to an accumulation of ≈1–2 single-nucleotide 
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Multidrug-resistant Salmonella enterica subspecies en-
terica 4,[5],12:i:- sequence type 34 represents a world-
wide public health risk. To determine its origin in the Unit-
ed States, we reconstructed a time-scaled phylogeny 
with a discrete trait geospatial model. The clone in the 
United States was introduced from Europe on multiple 
occasions in the early 2000s.
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polymorphisms/genome/year; the time to most recent 
common ancestor was 1994 (95% HPD 1988–2000); the 
number of collection location state transitions (Markov 
jumps) from Europe to the United States was 7.7 (95% 

HPD 5.9–9.3) and from the United States to Europe was 
0.8 (95% HPD 0–2.2); and the waiting times (in years; 
Markov rewards) were 519.9 (95% HPD 393.1–667.8) in 
Europe and 318.6 (95% HPD 234.0–417.6) in the United 
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Figure 1. Demographic reconstruction and phylogenetic 
analysis of Salmonella enterica subspecies enterica 
4,[5],12:i:- sequence type 34 isolates. A) Demographic 
reconstruction (subset 2) shows the population exponential 
growth of over time. The red line indicates the median 
effective population size with 95% highest posterior density 
credible interval (gray). B) Time-scaled phylogenetic analysis 
of isolates in subset 2 (n = 110 sequences after duplicates 
removal). Isolates were collected from multiple sources in 
the United States (blue) and Europe (red) during 2008–2017. 
An asymmetric discrete trait analysis model was used to 
reconstruct the locations on the nodes. The nodes, branches, 
and tree tips were annotated according to the collection 
location. The 95% highest posterior density credible intervals 
of node heights are indicted with transparent purple bars. 
The posterior probability for all inferred ancestral locations 
was >70%. The isolate source (food product, gray; human, 
purple; livestock, yellow; and other, green) is depicted in the 
heatmap appended to the tree tips. 
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States. The exponential growth rate of the population 
was estimated at 0.316/year (averaged across all subset 
means; Figure 1). In addition, the estimated (averaged) 
main introduction into the United States was 2004 (95% 
HPD 2000–2006; Appendix 2 Table 1). The occurrence of 
several additional smaller introductions was suggested 
by 48 sequences (6 from Europe and 42 from the United 
States). The 6 sequences from Europe were recovered 
from human sources; among sequences from the United 
States, 28 were from humans, 5 from food products, 6 
from livestock, and 3 from other sources. Information 
on recent international travel was obtained for 22/28 

of US isolates from humans, 2 of whom had traveled (1 
to the Philippines and the other to France [S. Meyer et 
al., Minnesota Department of Health, pers. comm., 2019 
Sep 23]).

Among the 1,431 Salmonella 4,[5],12:i:- ST34 se-
quences, 978 (68.34%) had genetic determinants contrib-
uting to the ASSuT profile, 108 (7.55%) conferred resis-
tance to quinolones, and 82 (5.73%) conferred resistance 
to extended-spectrum cephalosporins. The probability 
of harboring most predominant acquired antimicrobial 
resistance genes (AARGs) conferring the resistance phe-
notypes described above was significantly higher for 
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Figure 2. Summary of posterior 
estimates of all 10 subsets 
of sequences of Salmonella 
enterica subspecies enterica 
4,[5],12:i:- sequence type (ST) 34 
collected from multiple sources 
in the United States and Europe 
during 2008–2017. A) Inferred 
time (year) of the most recent 
common ancestor of the emerging 
Salmonella 4,[5],12:i:- ST34 
clade. B) Estimated mutation 
rate (uncorrelated log-normally 
distributed mean parameter). C–F) 
Number of unobserved transitions 
from Europe to the United States 
(C) and United States to Europe 
(E) along each branch (Markov 
jumps) and total phylogenetic tree 
length spent (Markov rewards) 
in Europe (D) and the United 
States (F). Violin plots illustrate 
the posterior distribution and 
probability density of each subset. 
Dashed red vertical lines indicate 
average posterior value; red 
shaded areas indicate average 
95% highest posterior density 
credible interval of all subsets.
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sequences of US isolates (odds ratio 2.37–26.05; Table). 
Yet associations between the collection location and the 
presence of blaCTX-M or qnrS1 genes were not significant 
(Table). In addition, AARGs conferring resistance to co-
listin (mcr-1/mcr-3/mcr-5; Appendix 1) were detected in 
isolates from Europe only (n = 5).

Conclusions
Salmonella 4,[5],12:i:- ST34 was introduced into the 
United States from Europe on multiple occasions 
since the beginning of the 21st century. The main in-
troduction occurred in 2004; additional independent 
introductions resulted in small clades for which the 
predominant sources were human travelers and im-
ported food products. Human travelers (6) and im-
ported food products (7) have been described as po-
tential vehicles for introduction of salmonellae.

The date of introduction of the main clade into 
the United States is later than the first peer-reviewed 
report of a Salmonella 4,[5],12:i:- infection in the 
country in 1998 (2). However, given the antimicro-
bial susceptibility profile of isolates from that report 
(mostly not ASSuT) (2), they most likely belonged to 
the nonemerging ST19 clade, which was described 
elsewhere (4). In addition, the incidence of Salmonella 
4,[5],12:i:- in humans increased only modestly (9.5%) 
during 2006–2011 but increased dramatically (78.3%) 
during 2011–2016 (8). A similar increase in detection 
after 2011 was described for clinical cases in swine 
from the midwestern United States (9). The differ-
ence between the date of main introduction into the 
United States found in this study and the later sharp 
increase in its prevalence in animals and humans may 
in part result from changes in reporting practices and 
increasing awareness (8). However, the increase since 
2011 can be the result of rapid propagation of the ST34 
population, possibly associated with swine (4). More-
over, White et al. (10) recently reported that accord-

ing to the National Antibiotic Resistance Monitoring 
System, the percentage of ASSuT-resistant Salmonella 
4,[5],12:i:- from humans increased from 17% in 2009 
to 59.1% in 2015 (out of all Salmonella 4,[5],12:i:- clini-
cal isolates from humans). This increase probably re-
sulted to a large extent from ST34 strains, in which 
this phenotype is predominant. The estimated expo-
nential yearly growth rate determined in our model 
(0.316/year), which corresponds to a population dou-
bling time of 2.2 years, is in agreement with this dra-
matic increase of the ST34 population.

The presence of AARGs conferring resistance to 
quinolones and extended-spectrum cephalosporins 
has mainly been observed since 2014 and may be bi-
ased by the lack of sequences before 2013 (Appendix 
2 Figure 12). Yet AARGs conferring resistance to qui-
nolones were not found in Salmonella 4,[5],12:i:- ST34 
strains from Europe collected before 2010 (1), and 
therefore our findings may reflect an increasing preva-
lence of these resistance determinants. Given time and 
overall unidirectionality of Salmonella 4,[5],12:i:- ST34 
transmission from Europe to the United States, it is 
likely that the acquisition of AARGs to quinolones 
occurred independently in the United States and in 
Europe. Yet introduction of resistant strains from the 
United States to Europe is also possible. Contributors 
to the acquisition of resistance in the United States 
might be the approval for enrofloxacin use in swine 
in the United States since 2008 (11) and the potential 
dissemination of plasmids harboring AARGs to quino-
lones between Salmonella serotypes (12). Independent 
acquisition of resistance to quinolones by Salmonella in 
Asia has also been suggested (13). The presence of mcr 
resistance genes conferring resistance to colistin in se-
quences from Europe (n = 5) is alarming, given their re-
cent worldwide spread (14). However, further investi-
gation of the travel history associated with these cases 
may be required because the acquisition of mcr genes 
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Table. Association between collection location and presence of resistance genetic determinants in sequences of Salmonella enterica 
subspecies enterica serotype 4,[5],12:i:- sequence type 34 isolates collected in Europe and the United States, 2008–2017* 

Conferring resistance to 
Presence of genetic 

resistance determinants 

No. positives/total (%) Odds ratio (95% CI), 
United States vs. 

Europe p value† Europe United States 
ASSuT ASSuT‡ 406/690 (58.84) 572/741 (77.19) 2.37 (1.87–3.00) <0.001 
Extended-spectrum 
cephalosporins 

blaCTX-M genes§ 4/690 (0.58) 14/741 (1.89) 3.30 (1.03–13.84) 0.032 
blaCMY-2 2/690 (0.29) 37/741 (4.99) 18.06 (4.63–155.09) <0.001 
blaSHV-12 0/690¶ 27/741 (3.64) 53.15 (3.24–873.11) <0.001 

Quinolones qnrB19 9/690 (1.3) 51/741 (6.88) 5.59 (2.70–13.01) <0.001 
qnrB2 0/690¶ 20/741 (2.7) 39.24 (2.36–650.05) <0.001 
qnrS1 6/690 (0.87) 13/741 (1.75) 2.03 (0.72–6.57) 0.22 

aac(6′)-Ib-cr 1/690 (0.14) 19/741 (2.56) 18.11 (2.86–751.91) <0.001 
*ASSuT indicates ampicillin, streptomycin, sulfonamides, and tetracycline. 
†A statistically significant p value (boldface) is <0.05/8 = 0.00625 (adjusted for multiple comparisons using Bonferroni’s correction). 
‡Simultaneous presence of blaTEM-1, strA, strB, sul2, and tet(B) genes (Appendix 2, https://wwwnc.cdc.gov/EID/article/26/12/20-0336-App2.pdf). 
§Including blaCTX-M-1 (n = 1), blaCTX-M-14 (n = 2), blaCTX-M-55 (n = 14), and blaCTX-M-65 (n = 1). 
¶Haldane-Anscombe correction (adding 0.5 to all 4 cells) was used to account for cells with a value of 0. 
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may be travel associated (15). The spread of Salmonella 
4,[5],12:i:- ST34 from Europe to the United States and 
the presence of plasmid-mediated resistance genes to 
key antimicrobial classes such as quinolones, extend-
ed-spectrum cephalosporins, and colistin in this clade 
further highlights its potential risk to public health and 
emphasizes the need for robust surveillance and miti-
gation programs for such transboundary pathogens.
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Transmission of Multidrug-Resistant 
Salmonella enterica Subspecies enterica 
4,[5],12:i:- Sequence Type 34 between 

Europe and the United States 
Appendix 2 

Study population 

The metadata of 1431 Salmonella enterica serotype 4,[5],12:i:- of sequence type (ST)34 

isolates collected in USA (from multiple states) and Europe (mainly from United Kingdom and 

Denmark; TableS1) from 2008 through 2017 (excluding years 2011 and 2012) was obtained 

through various public sources (see below). Overall, the analysis included sequences of 690 

European isolates and 741 isolates from USA (of which 73%, 10%, 4% and 13%, and 61%, 15%, 

20% and 4% were recovered from humans, food products, livestock and other sources in Europe 

and USA, respectively). Availability of sequences from both USA and Europe on a certain 

collection year was set as a selection criterion to prevent potential bias of representing historic 

samples from a single location. In addition, when available, the sequences full collection date 

was used. Mid-year or mid-month were used as proxy when only the year or the year and month 

of collection were available, respectively. The study sequences were mainly identified using the 

National Center for Biotechnology Information (NCBI) ‘pathogen detection’ platform 

(https://www.ncbi.nlm.nih.gov/pathogens/; accessed: October 2017) (n=1162/1431). Additional 

sequences were found using the European Bioinformatics Institute (EMBL-EBI; 

https://www.ebi.ac.uk/) website (n=196/1431) and a recent study on S. 4,[5],12:i:- in USA 

(n=73/1431) (1). 

Similar number of samples from each location-year combination were analyzed to avoid 

possible temporal and/or spatial selection biases that could affect the outcome of the analysis. 

Therefore, 50 sequences from years in which sequences were available from only one location 

were excluded from the analysis. This has further decreased the number of S. 4,[5],12:i:- ST34 

https://doi.org/10.3201/eid2612.200336
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sequences that were collected before 2013 and were available in the NCBI repository (Appendix 

2, Figure 12), which may have limited the temporal signal in the dataset and biased the sample 

selection for the different subsets. Moreover, with the exception of S. 4,[5],12:i:- ST34 sequences 

from Vietnam, for which a European origin was previously suggested (2), there is limited 

availability of S. 4,[5],12:i:- ST34 sequences from world regions other than USA and Europe 

(mainly from United Kingdom and Denmark), and from non-human samples. Therefore, we 

could not assess the importance of other locations (different from USA and Europe) or to 

demonstrate the transmission of the pathogen between sources, respectively. However, despite 

these limitations, we were able to include 33% of the available S. 4,[5],12:i:- ST34 study 

population initially considered and to consistently demonstrate in multiple random subsets the 

possible directionality of transmission from Europe into USA (see text). The agreement with a 

preceding study in which a similar conclusion was obtained based on genetic similarities 

between S. Typhimurium and its monophasic variant from USA and Europe (1) further supports 

our findings. 

Data analysis 

Time-scaled phylogeny and discrete trait analysis 

Bayesian Evolutionary Analysis Sampling Trees (BEAST v1.8.4 (3)) was used for 

estimation of divergence times, mutation rates and location trait transitions. 

Subsets selection 

Ten subsets of 112 sequences were selected for a time scaled analysis. To minimize the 

impact of potential spatial and temporal biases on the analysis outcome, the data was first 

stratified by collection location (Europe and USA) and by collection year. Then, an equal 

number of sequences from each location-year combination were randomly selected from the 

available sequences (up to ten sequences from each location-year combination) for each subset. 

Overall 474/1431 sequences were included in the selected subsets, of which 129 (27.2%), 233 

(49.2%), 43 (9.1%), 35 (7.4%), 13 (2.7%), 7 (1.5%), 8 (1.7%), 1 (0.2%) and 5 (1.1%) were 

represented in a single, two, three, four, five, six, seven, eight and ten of the subsets, 

respectively. 
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Data filtering and quality control 

Paired-end Illumina reads were downloaded from the NCBI repository and read quality 

was assessed using FASTQC (v0.11.6 (4)). De novo genome assemblies were constructed using 

the SPAdes assembler (v3.12.0) with the ‘--careful’ option (5)). When necessary, the ‘repair.sh’ 

command in BBmap (6) was used to fix disordered raw reads before reassembly. The quality of 

contigs was assessed using QUAST (v4.6.3 (7)). Only sequences for which the N50 of 

assembled contigs was at least 30,000 nucleotides were further analyzed. SRR3322114 had a low 

N50 (10,567) yet was mistakenly included in the analysis (subsets 5 and 7). However, the 

inclusion of this single sequence is unlikely to affect the outcome, as also demonstrated by the 

similar outcomes of the multiple subsets used. In addition, the Salmonella In Silico Typing 

Resource (SISTR) v1.0.2 (8) was used only on 67% of the assemblies. However, we found that 

96% of the in silico predicted serotype agreed with the reported serotype (the remaining 4% were 

removed from the analysis). Therefore, the represented population consisted of mainly 

4,[5],12:i:- and not the diphasic ST34. In addition, the quality of all contigs from the de novo 

genome assemblies of the selected subsets (n=474 sequences) was further assessed: Bowtie2 

(v2.3.4.1 (9)) was used to align the raw reads to the contigs and BBmap (v38.06 (6)) was used to 

calculate the average coverage depth of the contigs. Only sequences in which the average 

coverage depth of the contigs was at least 20 were included in further analysis. 

Temporal signal 

Reconstruction of maximum likelihood (ML) phylogeny trees for each subset was 

conducted for a priori estimation of the ‘temporal signal’ of the data. Raw reads were mapped to 

the reference S. 4,[5],12:i:- genome strain S04698-09 (RefSeq NZ_LN999997) using bowtie2 

(v2.3.4.1 (9)) with default parameters. SAM files were compressed into BAM and sorted using 

'view' and 'sort' commands from SAMtools (v1.3 (10)). Candidate single nucleotide 

polymorphisms (SNPs) were identified by using SAMtools (v1.3 (10)) and VarScan2 (v2.3.9 

(11)). For each BAM alignment, a pileup file was created using ‘mpileup’ command from 

SAMtools (10), and only high quality SNPs were selected using ‘mpileup2snp’ command from 

VarScan2 (11) with the following criteria: a coverage threshold of 8, a minimum average base 

quality (Phred quality score) of 30, and a 90% agreement threshold. SNPs found using this 

method were output in variant call format and were parsed and examined. Phage regions were 

detected in the reference genome using PHASTER (12) and SNPs within such regions were 
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masked using a custom python script (below – script 1). Recombination regions were identified 

using Gubbins (v2.3.2 (13)). Duplicate sequences (i.e. different isolates but genetically identical) 

were removed using a custom python script (below –script 2). Phylogenetic ML tree 

reconstruction was conducted for each subset separately using RAxML (v8.2.10 (14)) with the 

following definitions: a general time reversible substitution evolutionary model with gamma 

correction (GTR+Γ), 250 rapid bootstrap replicates and four randomly generated rapid bootstrap 

seeds. The best tree was selected based on the maximum likelihood and all bootstrap trees were 

concatenated into a single file containing the 1000 bootstrap trees. 

The ML phylogenetic trees were used for estimating the ‘Temporal signal’ by generating 

a linear regression of phylogenetic root-to-tip distances against the sampling dates using Tempest 

(v1.5 (15)). All subsets demonstrated a positive correlation between root-to-tip distances and 

sampling dates in all subsets (R2=0.21-0.27). 

Model selection 

A single subset (subset 2) was arbitrarily selected for the model selection process 

(including the discrete trait model selection) and the final model combination was applied to all 

ten subsets. 

A general time reversible (GTR) substitution model was selected using Jmodeltest 

(v2.1.10) (16,17). Different combinations of molecular clocks (i.e. strict or uncorrelated 

lognormal relaxed) and population growth models [i.e., constant, logistic, exponential, or 

Gaussian Markov random field (GMRF) Bayesian skyride] were evaluated. Each model 

combination was tested in two independent Markov chain-Monte Carlo (MCMC) runs of at least 

200 million iterations, with sampling every 20,000 iterations. Convergence and proper mixing of 

all MCMC runs (ensuring an effective sample size > 200) and agreement between the 

independent MCMC runs for each model were verified manually using Tracer (v1.7.1 (18)) after 

excluding 10% of the MCMC run as burn-in. The log marginal likelihoods for each model were 

obtained using path sampling (PS)/stepping-stone sampling (SS) (see below) and the models 

were compared by calculating the Bayes factors (19,20). The combination of GTR substitution 

rates, uncorrelated lognormal relaxed molecular clock, and exponential growth demographic 

model had the highest log Bayes factor value and was chosen as the model specification for 

further analyses. 
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In addition to the ‘temporal signal’ analysis with Tempest (above), at this stage, a tip-date 

randomization test was conducted (with the selected model combination) using the package 

‘TipDatingBeast’ (v1.0.6 (21)) in R (v3.4.3 (22)), and the evaluated time to most recent common 

ancestor (TMRCA) and mutation rate values were compared between the real data and the 

randomized trials (n=20). This further support the temporal structure of the data as no overlap 

was found between the highest posterior density (HPD)95% credible intervals and mean values of 

the randomized trials (n=20) and real data, respectively, for time to the most recent common 

ancestor (TMRCA) and mutation rates (Appendix 2 Figure 13). 

Discrete trait analysis 

Bayesian phylogeographic reconstruction was conducted by incorporating the ‘collection 

location’ trait under a discrete trait geospatial model (23) using the model combination found in 

the previous step. Symmetric and asymmetric models for trait transition were considered. Each 

model combination was tested as described above. The combination of GTR substitution rates, 

uncorrelated lognormal relaxed molecular clock, and exponential growth with asymmetric trait 

transitions was selected in this step. 

This model combination was then used with all remaining subsets (at least two 

independent runs of 200 million iterations or more were run for each). The directionality of the 

spatial diffusion process was examined by calculating the ‘collection location’ Markov jumps 

(estimates the expectations for state transitions from USA to Europe and from Europe to USA) 

and Markov rewards (waiting times; estimate the expectations for time that is spent in each 

location, Europe or USA) (24,25). We found that the transmission was predominantly 

unidirectional, as reflected by the high number of Markov jumps from Europe to USA and the 

long waiting periods (Markov rewards) in Europe (see text). 

In all analyses, the independent MCMC run outputs (log and trees files) of each model 

were combined using LogCombiner (v1.8.4 (3)), after exclusion of a 10% burn-in period. 

TreeAnnotator (v1.8.4 (3)) was used for selection and annotation of a single maximum clade 

credibility tree (using common ancestor node heights). 

In all models, a mutation rate of 3.4×10−7 substitutions per site per year, previously 

estimated for S. Typhimurium DT104 (26), was set as the mean value for a lognormal prior 

distribution of the clock rate (with standard deviation (stdev)=2). In addition, a lognormal 
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distribution (mean=10 and stdev=2.148) was set as prior population size. In addition to the priors 

described above, for logistic population growth models a Laplace distribution (mean=0, 

stdev=0.026568; initial value=0.26) was set as a prior. In order to avoid the potential 

ascertainment bias as only the variable site alignments were used in the analysis (ranged between 

1195 and 1465 sites in the ten subsets), the total number of nucleotides in the reference genome 

(RefSeq NZ_LN999997; 1204735, 1315079, 1312718 and 1204706 for A, C, G & T, 

respectively) were incorporated in the xml file as an approximation of the non-variable sites in 

the analysis. The following text: 

<patterns id="patterns" from="1" strip="false"> 

        <alignment idref="alignment"/> 

    </patterns> 

Was replaced with: 

<mergePatterns id="patterns">  

 <patterns from="1" every="1">  

 <alignment idref="alignment"/>  

 </patterns>  

 

 <constantPatterns>  

 <alignment idref="alignment"/>  

 <counts>  

 <parameter value="1204735 1315079 1312718 1204706"/>  

 </counts>  

 </constantPatterns>  

 </mergePatterns> 

In addition, for estimating the time of the main introduction into USA, the clade’s 

ancestral node was visually identified in each of the ten subsets maximum clade credibility trees 

and the node height and high posterior density 95% (HPD95%) were recorded and the average 

value for all subsets were calculated (Appendix 2 Table 1 and Figures 1-10) . 
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Moreover, the analysis of subset 2 (without the discrete trait analysis) was repeated (with 

two independent seeds) while sampling only from the prior, to verify that prior parameters were 

not over-constraining the calculations. 

In all models, The log marginal likelihoods for the model were obtained using path 

sampling (PS) / stepping-stone sampling (SS) (for both PS and SS - 100 paths were used, and the 

number of PS/SS iterations was equal to number of MCMC iterations in the analysis divided by 

the number of PS/SS paths) and the models were compared by calculating the Bayes factors 

(19,20). 

Association-index (AI) 

Evaluation and quantification of the correlation between the location trait and shared 

ancestry was done using the Bayesian Tip-association Significance testing (BaTS v0.9.0) (27) 

software. Briefly, the software calculates the AI for each tree in the posterior distribution of the 

real data and for permutations in which the traits are randomly assigned to the tree tips. The latter 

will serve as the null hypothesis, in which there is no association between the trait and ancestry. 

A posterior distribution of AI statistic is formed for the real data and for the permutations. The 

test significance is obtained by calculating the proportion of the mean posterior estimate for the 

permutations that are extreme than the mean posterior for the real data. The trait-ancestry 

correlation was estimated (using 1,000 permutations) for each of the ten subsets in this analysis 

and found statistically significant (p<0.05; Appendix 2 Table 2) with an average ratio of 0.12 

(HPD95%: 0.11-0.14), suggesting an association between the sampling locations and the tree 

phylogeny. 

Potential additional introductions 

In addition to the main introduction from Europe to USA, the maximum clade credibility 

trees of all subsets were visually scanned to detect a few sequences (up to five in a monophyletic 

group) intermingled with sequences from a different location (i.e. European sequences located 

within USA main clade and/or USA sequences that were not part of USA main clade; Appendix 

2 Figures 1-10), which can potentially indicate additional introductions. Sequence details were 

summarized and further investigation of potential travel history records was conducted. Overall, 

48 sequences (6 from Europe and 42 from USA) that represent potential additional introductions 

(between 4 and 14 sequences were included in each subset – Appendix 2, Table 4) were 
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identified. The six European sequences were recovered from human sources and 28, 5, 6 and 3 of 

USA sequences were recovered from humans, food products, livestock and other sources, 

respectively. History of recent international travel information was obtained for 22/28 of USA 

human isolates, of which information was not available for six (cases were not interviewed), 14 

had not traveled recently and two had recently traveled: one became ill while traveling to the 

Philippines and the other was travelling to France for three days in the week before showing 

clinical signs (personal communication - Minnesota Department of Health). 

Sequence typing and acquired antimicrobial resistance genes 

De novo genome assemblies were constructed using SPAdes (v3.12.0 (5)). Acquired 

antimicrobial resistance genes (AARGs) and Multi Locus Sequence types (MLST) were 

identified using ResFinder (v2.1 (28)) and MLST; v1.6 (29)) tools from the ‘bacterial analysis 

pipeline’ in the Center for Genomic Epidemiology server (https://cge.cbs.dtu.dk/services/cge/). 

All tools and their databases were downloaded and installed on a local server (March 2018) and 

used with the ‘bacterial analysis pipeline’ default settings. Outcomes were combined in a tab-

separated file using python (www.python.org) pandas package (v0.23.4 (30)). 

The simultaneous presence of genotypic resistance to ampicillin, streptomycin, 

sulfonamides, and tetracycline (ASSuT) was defined according to Elnekave et al. (1) as 

simultaneous presence of blaTEM-1, strA, strB, sul2, and tet(B) genes. However, the nomenclature 

of the genes in ResFinder was updated and therefore: strB gene was identified as aph (6)-Id 

gene; and strA gene was identified as strA or aph(3'')-Ib genes. 

R (v3.4.3 (22)) was used to perform Pearson’s chi-square or Fisher’s exact tests [using 

package hypergea (v1.3.6 (31)) to incorporate the Haldane-Anscombe correction for zero values, 

when needed] for estimating associations between ‘collection location’, defined as USA or 

Europe, and: (i) the simultaneous presence of genotypic resistance to ASSuT; (ii) presence of 

predominant (found in at least 15 sequences) AARGs to quinolones; or iii) to extended spectrum 

cephalosporins (ESC; see text). 
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Data summarizing and visualization 

The R packages ‘dplyr’ (v0.7.4 (32)), ‘stringr’ (v1.2.0 (33)) and ‘tidyr’ (v0.8.0 (34)) were 

used for data filtering and subset selection. Packages ‘vioplot’ (v0.3.0 (35)), ‘HDInterval’ (v0.2.0 

(36)), ‘ggplot2’ (v2.2.1 (37)), ‘gridExtra’ (v2.3 (38)), ‘ggpubr’ (v0.2 (39)), ‘lubridate’ (v1.7.1 

(40)) and ‘ggtree’ (v1.10.5 (41)) were used for output summary and visualization. 

Phylogenetic ML tree reconstruction for the entire study population 

In addition to the described analysis, to estimate whether the selected subsets are 

providing a good representation of the entire study population tree topology, a ML core genome 

phylogeny was reconstructed using all study isolates (n=1431). Core and pan genomes were 

obtained using the annotated [using Prokka (v1.13.3 (42))] assembled contigs in ‘Roary’ (v3.12.0 

(43)) with an identity cut-off of 95%. Core genome ML tree reconstruction was conducted using 

RAxML (v8.2.10 (14)) (after removal of duplicates only 1185 sequences were included in the 

phylogeny tree; 25,687 variable sites were used for this analysis; Appendix 2, Figure 11) with a 

general time reversible substitution evolutionary model with gamma correction (GTR+Γ) and 

1000 bootstrap replicates. Trees were rooted using S. Enteritidis isolates (SRR1965760 and 

SRR3242211). Packages ‘ape’ (v5.0 (44)) and ‘ggtree’ (v1.10.5 (45)) in R software (v3.4.3 (22)) 

were used for visualization. 

Data availability 

The raw XML and log files are available from the authors upon request. 
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Script 1 – Masking phage and recombinant regions 

# filter_snps -r [regions file] -f [VCF file] -o [output folder] 

# masks bases in a VCF file with locations specified in the regions file 

import argparse 

import pandas as pd 

import os 

def filter_phage(regions,pos,alt): 

found = False 

for i in range(len(regions)): 

j=regions.ix[i] 

if pos >= j.start and pos <= j.stop: 

return 'N' 

return alt 

def main(): 

#argparse 

parser = argparse.ArgumentParser() 
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parser.add_argument('-r','--regions',help='Input tab separated regions file (no 

header)',required=True) 

parser.add_argument('-f','--file',help='Input vcf formatted SNPS file',required=True) 

parser.add_argument('-o','--output',help='Output folder',required=True) 

args=parser.parse_args() 

outputfolder = args.output 

vcfFile = args.file 

regions = args.regions 

name = vcfFile.split('/')[-1].split('.')[0] 

#create output folder if it doesnt exist 

if not os.path.exists(outputfolder): 

os.mkdir(outputfolder) 

regions=pd.read_csv(regions,sep='\t',names=['id','start','stop']).sort_values('start') 

vcf = pd.read_csv(vcfFile,sep='\t',skiprows=23) 

vcf['ALT']=vcf.apply(lambda row: filter_phage(regions,row['POS'], row['ALT']), axis=1) 

with open(vcfFile) as myfile: 

head = [next(myfile) for x in range (23)] 

test=[] 

test.append(vcfFile) 

counts = vcf['ALT'].value_counts().to_dict() 

#test.append(counts.get('A')+counts.get('T')+counts.get('C')+counts.get('G')) 

print(counts) 

with open(outputfolder+'/'+name+'_filtered.vcf','w') as newfile: 

newfile.writelines(head) 
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vcf.to_csv(newfile,mode='a',sep='\t',index=False) 

main() 

Script 2 – Duplicates removal 

import sys 

from Bio import SeqIO 

#clean.py [fasta file] 

def sequence_cleaner(fasta_file, min_length=0, por_n=100): 

# Create our hash table to add the sequences 

sequences={} 

# Using the Biopython fasta parse we can read our fasta input 

for seq_record in SeqIO.parse(fasta_file, "fasta"): 

# Take the current sequence 

sequence = str(seq_record.seq).upper() 

# Check if the current sequence is according to the user parameters 

if (len(sequence) >= min_length and 

(float(sequence.count("N"))/float(len(sequence)))*100 <= por_n): 

# If the sequence passed in the test "is it clean?" and it isn't in the 

# hash table, the sequence and its id are going to be in the hash 

if sequence not in sequences: 

sequences[sequence] = seq_record.id 

# If it is already in the hash table, we're just gonna concatenate the ID 

# of the current sequence to another one that is already in the hash table 

else: 

sequences[sequence] += "_" + seq_record.id 
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# Write the clean sequences 

# Create a file in the same directory where you ran this script 

output_file = open("clear_" + fasta_file, "w+") 

# Just read the hash table and write on the file as a fasta format 

for sequence in sequences: 

output_file.write(">" + sequences[sequence] + "\n" + sequence + "\n") 

output_file.close() 

print("CLEAN!!!\nPlease check clear_" + fasta_file) 

userParameters = sys.argv[1:] 

try: 

if len(userParameters) == 1: 

sequence_cleaner(userParameters[0]) 

elif len(userParameters) == 2: 

sequence_cleaner(userParameters[0], float(userParameters[1])) 

elif len(userParameters) == 3: 

sequence_cleaner(userParameters[0], float(userParameters[1]), 

float(userParameters[2])) 

else: 

print("There is a problem!") 

except: 

print("There is a problem!") 
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Appendix 2 Table 1. The estimated time to the most recent common ancestor (TMRCA) of the main USA S. 4,[5],12:i:- ST34 clade 
in each subset. The ancestor node was visually identified* in each subset and an average value was calculated for all* 
Subset TMRCA - USA clade (HPD95%) 
1 2005 (2002-2007) 
2 2002 (1996-2007) 
3 2006 (2004-2007) 
4 2003 (2000-2006) 
5 2003 (2001-2006) 
6 2004 (2000-2007) 
7 2006 (2004-2007) 
8 2002 (1999-2005) 
9 2001 (1995-2005) 
10 2003 (2000-2006) 
All (average) 2004 (2000-2006) 
*The ancestor nodes are indicated in Appendix 2, Figures 1–10. HPD95%, highest posterior density 95% credible interval 

 
Appendix 2 Table 2. The association index (AI) statistic mean of the real data and the randomized permutations* (the null 
hypothesis) for each of the ten subsets; and the AI ratio† between the real data and randomized permutations. 

Subset 

Mean (HPD95%
‡) 

p value Observed data 
Null hypothesis (randomized 

permutations) AI ratio 
1 0.49 (0.41-0.59) 5.95 (4.67-7.25) 0.08 (0.08-0.09) 0.0 
2 0.37 (0.31-0.48) 5.91 (4.59-7.26) 0.06 (0.06-0.07) 0.0 
3 0.48 (0.32-0.75) 5.36 (4.2-6.54) 0.09 (0.08-0.11) 0.0 
4 0.68 (0.4-0.9) 5.75 (4.55-6.99) 0.12 (0.09-0.13) 0.0 
5 0.76 (0.66-0.91) 6.06 (4.67-7.43) 0.13 (0.12-0.14) 0.0 
6 0.62 (0.35-0.95) 6.19 (4.89-7.49) 0.1 (0.07-0.13) 0.0 
7 0.99 (0.57-1.42) 5.69 (4.42-6.95) 0.17 (0.13-0.2) 0.0 
8 0.58 (0.38-0.92) 6.03 (4.7-7.34) 0.1 (0.08-0.13) 0.0 
9 0.96 (0.65-1.21) 6.07 (4.72-7.36) 0.16 (0.14-0.16) 0.0 
10 1.28 (1.02-1.66) 6.19 (4.91-7.45) 0.21 (0.21-0.22) 0.0 
*BaTS (v0. 9.0; (Appendix 2, ref. 26)) was used for calculating the AI and 1000 permutations were set in the analysis of each subset. 
† AI mean of Real (observed) data / randomized permutations. Values closer to zero, rejects the null hypothesis (AI ratio = 1) and suggest 
association between location and ancestry (as was described by Mather et al. (Appendix 2, ref. 25)) 
‡ HPD95%= Highest posterior density 95% credible interval 
 

 
Appendix 2 Table 3. The number sequences from potential additional introductions through travel/import identified in each subset* 

Subset 
Collection location 

Total Europe USA 
1 1 10 11 
2  5 5 
3  8 8 
4 2 4 6 
5  10 10 
6 1 7 8 
7 2 10 12 
8  7 7 
9  14 14 
10  13 13 
All 6 88 94 
*Introductions in addition to the one leading to the main USA S. 4,[5],12:i:- ST34 clade (as described in the text); Some of the sequences are 
included in more than one subset. Overall, 48 unique sequences were identified as possible travel/import source for the additional introductions. 
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Appendix 2 Figures 1–10. Time scaled phylogenetic analysis of S. 4,[5],12:i:- ST34 isolates in subsets 1 

to 10 (n ranged between 106 and 110 sequences following duplicates removal). Isolates were collected in 

USA (blue) and Europe (red) between 2008 and 2017 from multiple sources. Asymmetrical discrete trait 

analysis model was used to predict the locations on the nodes. The nodes, branches and tree tips were 

annotated according to the collection location. Nodes with location probabilities below 70% are indicated 

(with the location probability value). The ancestor node of the main USA S. 4,[5],12:i:- ST34 clade is 

circled (black). In addition, the bacterial isolate source [‘Food product’ (grey), ‘Human’ (purple), ‘Livestock’ 

(yellow) and ‘Other’ (green)] is depicted in the heatmap appended to the tree tips. 

 

 

 

Appendix 2 Figure 11.  A maximum likelihood phylogeny tree of the core genome of all S. 4,[5],12:i:- 

ST34 isolates (1431 sequences were included in the analysis, yet after removal of duplicates, 1185 

sequences were included in the phylogeny tree; 25,687 variable sites were used for this analysis). 

Isolates were collected in USA (blue) and Europe (red) between 2008 and 2017 from multiple sources. 

Salmonella Enteritidis isolates (SRR1965760 and SRR3242211) were used as outgroup (not included in 

the figure). 
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Appendix 2 Figure 12. The number of S. 4,[5],12:i:- ST34 sequences at the NCBI repository included in 

the study population and were collected in the USA (A) and Europe (B) in different years. The graph bars 

indicate of the overall number (purple) of available sequences and the number of sequences harboring 

genetic resistance determinants: blaCTX-M genes (blue), blaCMY-2 (orange), blaSHV-12 (red), qnrB19 (brown), 

qnrB2 (green), qnrS1 (yellow), aac(6’)-Ib-cr (turquoise) and ASSuT (grey). 
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Appendix 2 Figure 13. The mean posterior values [with 95% highest posterior density (HPD) credible 

interval] of the mutation rate (upper inset) and the time to the most recent common ancestor (TMRCA; 

lower inset) parameters are indicated for the real data (circle) and the randomized date repeats 

(triangles). The mean values of the real data are further emphasized with dashed red lines. 


